
Additional Presentation Notes
Cansecwest/core05
by Christopher Abad
Copyright© 2005

2

1 Who am I? 4
2 What this presentation is about 4
3 Profile 4
4 Behavior 4
5 Appearance 4
6 Unfortunately 4
7 Information Modeling & Deterministic Processes 4
8 Information Modeling & Random Processes 5
9 Information Modeling & Cognitive Processes 5
10 I Before E 5
10.1 I Before E 5
10.2 Except after C and in words like neighbor and weigh 5
10.3 The rule approaches fractal complexity 5
11 Gonna is not going to 5
12 Fractal Complexity & Romanesque Broccoli 6
13 IPL & The Midas Touch 6
14 Statistical Evidence of Language 6
15 Applications of Inverse Power Laws (IPL) 6
16 Byte Frequency Analysis 6
17 Substitution Ciphers 7
18 N-Grams and Frequency Analysis 7
19 N-Grams and Text Classification 7
20 N-Gram scoring in Classification 8
20.1 User fingerprinting 8
21 Markov Processes 8
22 Text Generation 8
23 Syntactical Structure 8
24 Dictionary Compression and Obligatory Structural Highlighting
 9
25 SEQUITUR 9
26 SEQUITUR and Text Classification 9
27 Idiot’s Bayes 10
28 Application of NBC 10
29 Structural Analysis of Unordered Sets 10
30 I,Sushi Algorithm 11
31 NMAP and host structural analysis 11
32 NMAP Corpus and intuitive structure 12
33 NMAP Corpus and TreeView 12
34 IPL and host analysis 12
35 Random Connectivity vs. IPL 12
36 Static Binary Analysis13
37 Binary Difference Analysis and Modularity 13
38 Binary Difference Analysis and Bioinformatics 13
39 Sequence Alignment 14
40 Needleman-Wunsch 14

3

41 Smith-Waterman and BLAST14
42 Sequence Alignment and Domain Shuffling 15
43 Program Flow Graphs 15
44 Program Roadmaps 16
45 Comments on Graph Isomorphism 16
46 Sequence Motifs and Binary Analysis 16
47 Lexical Cohesion 17
48 Three examples of reiteration would be the following sentence
pairs. 17
49 Collocation is a more broad association between lexical items.
 17
50 Collocation and WordNET 17
51 Collocation and functional binary analysis 18
52 In Closing 18

4

1 Who am I?
Christopher Abad
Lead Scientist @ Cloudmark, Inc.
aempirei @ the-mathclub.net

2 What this presentation is about
Profiling and the Analysis of Behavior
Classification and Analysis Methods
Logically Grouping things into Categories
Effectively Modeling Information
Fighting Anonymity

3 Profile
Presenting a subjects noteworthy characteristics
A formal summary or analysis of data, often in the form of a graph or table,
representing distinctive characteristics.
Recording a person’s behavior and analyzing psychological characteristics in
order to predict or assess their ability in a certain sphere or to identify a particular
group of people.

4 Behavior
A manner of conducting oneself
Anything that an organism does involving action and response to stimulation
The response of an individual, group, or species to it’s environment.
The way in which something behaves, functions or operates.

5 Appearance
An external show
An outward aspect
A sense impression or aspect of a thing
The world of sensible phenomena
The act, action, or process of appearing
The presentation of oneself in court as a party to an action often through the
representation of an attorney.

6 Unfortunately
Unfortuantely, more or less, if youre the watcher or the watched, most
information is too complex to automatically profile.

7 Information Modeling & Deterministic Processes
Do not incorporate random or cognitive stimuli
PRNGs, FSMs, Conrads Game of Life
Properly modeling the underlying behavioral mechanism

8 Information Modeling & Random Processes
Incorporate random input stimuli.
Sufficiently complex black-box deterministic processes appear to be random
processes, eg. PRNGs.
Games of chances, quantum dynamics.
Properly sampling data and building statistical models.

5

9 Information Modeling & Cognitive Processes
Relatively not understood.
Incorporates extremely complex, cognitive, stimuli
Plasticity in behavior, it changes based on the state of the system.
Increasing information about the process provides increasing predictability with
fractal complexity.
Current state can affect outcomes an arbitrary number of transitions later.
Cognitive processes are often naively modeled with statistical models, simply
because of their inherent complexity. For example city traffic, population
migration and sequences of baseball pitches, semi-living artist.

10 I Before E
10.1 I Before E

Linguistic rule first modeled deterministically.
Found to be an invalid model

10.2 Except after C and in words like neighbor and
weigh

Then modeled statistically, it sometimes occurs in situations like this
10.3 The rule approaches fractal complexity

I before E except after C and in words like neighbor and weight and
eidetic, and chemicals like protein and caffeine, and names like Einstein,
Neiman Marcus and Rottweiler and sentences like “Neither sheik seized
either form of weird leisure.” And “Go reinstall windows.”
grep –v ‘ \([rc]ei\)|(\ei[sdlnkrtzg\)’ words-with-ei.txt | wc
107 additional words that don’ t match any of the digrams found above

11 Gonna is not going to
sed ‘s/going to/gonna/g’
I am gonna kill you.
I am gonna the store.
sed ‘s/I am going to/Imma/g’
Imma kill you.
Imma the store.
Properly modeling many linguistic characteristics of language yields fractal
complexity.\

12 Fractal Complexity & Romanesque Broccoli
Many things exhibit fractal complexity
Written Language
Distribution of wealth
Topology of Friendster
Classical and Jazz Music
Connectivity of the Internet
ACGT protein sequences in DNA codings.
The sequences of opcodes in compiled programs.
Self similarity and fractal complexity is an emergent phenomenon of a class of
information that follows 1/f, Zipf’s or Inverse Power Laws from a statistical
model yet are in actually cognitive processes.

6

13 IPL & The Midas Touch
The reason we care about power law correlations is that we’ re conditioned to
think they’ re a sign of something interesting and complicated happening.
Midas Touch, everything we touch becomes inverse power law.

14 Statistical Evidence of Language
Nearly every aspect of language exhibits an inverse power-law relationship
IPL is not a true linguistic regularity.
Mandlebot proved that even monkey typing exhibits Zipf’s Law.
Reglardless, it is a strong and easily observable characteristic.

15 Applications of Inverse Power Laws (IPL)
Information Fingerprinting
Language Identification
Authorship Attribution
Cryptanalysis

16 Byte Frequency Analysis
Byte frequency is the simplest form of frequency analysis.
Count the number of times each byte value occurs across a given document.
Simple way to visualize inverse power laws
Frequency analysis is frequently used in linguistics, cryptanalysis and data
compression.
Frequency analysis in cryptanalysis can be used to gain additional information
about plaintext in cases where statistical aspects of natural language remain
unaffected by the encryption process.
In data compression, frequency analysis can help with selection of which
redundant and high frequency aspects of documents should be compressed.
To uncover a basic IPL relationship in language, simply sort the bins in a
histogram from most-to-least frequent.
Logit-transform graphs are associated with normal or binomial distributions
which are closely related with random data.
I NSERT GRAPHS DNA, PLAI NTEXT, XOR, DES, RANDOM

17 Substitution Ciphers
Byte frequency analysis applied to both the plaintext and ciphertext will yield
sorted histograms identical in all aspects with the exception of the bin labels.
I NSERT SORTED HI STOGRAMS FOR CI PHER AND PLAI N
TEXT
Taking bin labels from left-to-right of the ciphertext and plaintext sorted
histograms immediately reveals the substitution cipher mapping.
Substitution cipher mapping can be created by knowing the byte frequency
distribution of a given language.
Relative ordering of each successively less common byte should be reliably
consistent.
I NSERT SORTED HI STOGRAMS FOR CI PHERTEXT AND
CORPUS AND THEN A STATI STI CAL DECRYPTI ON

18 N-Grams and Frequency Analysis
An n-gram is a consecutive sequence of symbols from having length n.

7

3-grams (trigrams) for the string “ELITE” would yield “ELI” , LIT” and “ ITE”
n-grams can then be tallied and histograms can be created from their associated
probability distribution.
I NSERT CODE FOR DI GRAM FREQUENCY TABULATI ON
n-grams contain additional transitional information that would not otherwise be
observed by frequency analysis of non-overlapping sampling.
n-grams and markov processes are quite related
Digram and Trigram frequency analysis is often used in basic cipheranalysis but
does not seem to play a major role in any major compression schemes.
A common application n-gram frequency analysis is in text classification.

19 N-Grams and Text Classification
Basic n-gram text classification can be performed using a method strikingly
similar to both naïve Bayesian classification and Markov chains.
The first step is to build two corpuses, typically one with characteristic a and one
with characteristic ~a.
n-gram frequency tables are built from the two corpuses for a user selected n,
typically 2 to 4 for most natural languages.
build a matrix of n-gram to n-gram transitional probabilities.
Each cell represents the probability of a given state transition from a given n-gram
to each possible next symbol.
The percentage of the time that B follows A, etc.
I NSERT CODE AND TABLES FOR TRANSI TI ONAL
MATRI CES

20 N-Gram scoring in Classification
These matrixes can be used to score a document in question in terms of
probabilistic similarity to either of the two corpuses.
A document’s score in terms of a given n-gram probability matrix is its
multiplicative sum of the documents path of n-gram chains through the matrix.
The matrix that results in the highest score for a given document is said to
classification of the document in question.
What this similarity value actually represents is the probability of the given path,
or sequence of n-grams describing the document in question being generated by
the stochastic process governing the associated corpus.
The shortcomings of n-gram classification here are namely that natural language
is not a stochastic or random process although its statistical properties are
relatively reliable.
additional contextual insight into the next state transition may actually exist
outside of the n-gram window.
These shortcomings can be readily seen in applications to text generation using
Markov chains.
I NSERT EXAMPLES OF SI MI LARI TY SCORI NG

20.1 User fingerprinting
Sequences of commands at a command shell also happen to be easily
classifiable using n-gram analysis.

21 Markov Processes

8

A Markov Process is a type of stochastic process that has the Markov Property.
Transitional probability distribution of future states depends only on the current
state.
Additional insight into its past states provides no additional knowledge of future
outcomes.
Natural language is clearly not a Markov Process.
Modeling language this way still proves useful for certain tasks.
One task it is not useful for is text generation.

22 Text Generation
Text generation is done by performing a random walk through an n-gram
transition probability matrix.
I NSERT A MARKOV PROCESS GRAPH AND N- GRAM MATRI X
Markov Processes built from digrams or trigrams will yield peculiar language-like
gibberish, but rarely anything coherent.
For larger n’s, generated text will either have significant syntactical errors, or will
not significantly deviate from the original corpus.
I NSERT RANDOM WALK CODE AND GENERATED TEXT

23 Syntactical Structure
N-gram models clearly fail to capture the syntactical structure of language.
This is seen by its inability to generate simple coherent text.
This failure is partially due to the fact that structural influence exists outside of
the n-gram window.
An interesting approach combines of ideas from n-gram analysis and dictionary
based compression.
Dictionary based compression works on the premise that commonly occurring
group of symbols, called phrases, can be replaced by a new symbol with an
expansion rule.
EXAMPLE DI CTI ONARY THE FAT CAT ATE A RAT.

24 Dictionary Compression and Obligatory Structural
Highlighting

Dictionary based compression has no obligation or real necessity to highlight
structure.
A very simple extension on this idea can readily infer a hierarchical structure
within documents.
The basic idea is that small phrases can be replaced by new dictionary rules and
allowing for dictionary rules to recursively contain other rules.
The result is the compressed document and then the dictionary of recursively
defined expansion rules, and thus grammar trees.

25 SEQUITUR
This is known as the SEQUITUR algorithm.
EXAMPLE ALGORI THM AND RECURSI VE DI CTI ONARY FOR
THE FAT CAT…
Classification methods taking into account structural characteristics turned out to
be very effective.

9

A phylogenetic taxonomy of Dog breeds was actually performed using this
premise, as was a detailed dichotomy of the evolution of western languages in a
paper entitled “Language Trees and Zipping.”
Testing PRNGs with compression is actually relatively simple.
GZI P THE STREAMS OF PRNG LI NUX VS BSD

26 SEQUITUR and Text Classification
Text classification and authorship attribution using SEQUITUR or dictionary
based compression is based on the premise that a better compression ratio in
terms of a given dictionary implies that the document in question is more similar
to the corpus that generated the dictionary.
Simply try to compress the document in terms of each hierarchical dictionary
created from a set of corpuses.
The dictionary that results in a shorter representation or minimal description
length (MLD) of the document is the most similar to the document.
EXAMPLE OF SPANI SH AND ENGLI SH VS A TEXT

27 Idiot’s Bayes
A naïve bayes classifier is a simple probabilistic classifier.
Its probability model is a result of Bayes’ Theorem and the conditional probability
theorem.
The definition of conditional probability states that P(A|B)P(B) = P(A B) =
P(B|A)P(A).
A detailed articulation of Bayes’ Theorem is not necessary to explain Naïve
Bayes’ Classification due to oversimplified assumptions about independence
made by this type of classification.
Naïve Bayes’ Classification assumes that each probability of an event is
independent and is not affected by other events occurring.
This assumption is clearly not true for things NBC has been applied to, eg
language where features are words occurring in a document.
Despite this bogus assumption, the NBC model works more often in real world
applications than expected by its simple design.
SpamAssassin mostly works.

28 Application of NBC
Construct a table from words that occur in two corpuses, where each column
represents one of the corpuses, and each row, a word, and each cell the number of
occurrences of the given word within the given corpus.
Normalize each cell by diving it by the total number of words in the respective
corpus.
Each cell in this word probability table represents the probability of a randomly
sampled word from the column corpus being row word.
I NSERT WORD PROBABI LI TY TABLE BUI LDI NG CODE AND
I MG
Classification is performed by calculating the multiplicative sum of the
probabilities associated with all words in a given document that occur in the NBC
table.

10

Scoring is similar to that from n-gram classification, this is called the method of
maximum likelihood.
The corpus associated with the greatest score is considered to be most like the
document in question.
I NSERT DECI SI ON CODE
NBC is simple extension on basic frequency analysis principles.
It takes into no account structural information of natural language.
This is a clear inherent shortcoming of this model.
NBC has a larger application domain than n-gram analysis and SEQUITUR as
those methods cannot be applied to unordered sets.

29 Structural Analysis of Unordered Sets
The assumption of independence in NBC is a major shortcoming and is a
translation of the same short comings of n-gram analysis in linear documents.
Neither NBC nor n-gram analysis take into account structural information present
in data and essentially modeling data statistically as random processes.
The SEQUITUR algorithm provided a method to discern additional structural
about the documents in question.
This was done through recursive tokenization of common adjacent symbols.
Unordered sets lack the concept of node adjacency.
The SEQUITUR algorithm can be readily extended if adjacency can be added to
unordered sets.
Adjacency in graph theory is any two nodes that are connected by an edge.
The SEQUITUR algorithm in terms of this graph becomes an operation on
adjacent nodes and their edge.
Common node pairs, and their edge, are replaced with a new node and an
expansion rule. Given the additional property that an unordered set is fully
connected, every node, or feature, is connected to every other node, the extension
of the SEQUITUR algorithm follows nicely… Almost.
I NSERT GRAPH OF LI NEAR DOCUMENT VS FULLY
CONNECTED

30 I,Sushi Algorithm
Given k features, k-1 edges would exist in a linear corpus as opposed to k2-k if it
were unordered.
A corpus would have to contain multiple training sets since most information
modeled as unordered sets don’ t typically have item repetition.
A collection of open ports on a host will never contain the same port twice, nor
will the order in which the ports are listed make a difference.
The digram ‘TH’ may occur many times in a single sentence and the order of ‘T’
and ‘H’ in the digram matters, as “HT” is distinctly different.
The exact extended algorithm, dubbed I, SUSHI, is as follows.
Given a collection of sets, recursively replace the most common two-feature pair
across all sets with a new token and an expansion rule. Once no two-feature pair
occurs more than once, stop. For any dictionary symbol occurring only once
across all expansion rules and main corpus, expand the symbol and delete the
expansion rule.

11

31 NMAP and host structural analysis
NMAP is an open source tool for network exploration.
In a nutshell, NMAP performs host discovery, port scanning, operating system
detection, and now application discovery.
In terms that we care about, NMAP provides us with a set of characteristics that
describe a given host.
Characteristics are unordered, i.e. that the order in which open ports on a given
host are listed provides no real information, only the fact that they are either open
or closed.
I NSERT NMAP SCAN COMMAND LI NE
Because scan reports are in a plain textual format, all of the characteristics which
we are interested in are parsed out.
I NSERT NMAP SCAN REPORT AND I NFO ON SECTI ONS

32 NMAP Corpus and intuitive structure
Our corpus is a collection of sets each representing a single host, and containing
all of the characteristics about each that we are interested in interpreting a
structure from.
The assumptions made are that host characteristics such as ports, services and OS
are not independent features and they exhibit some kind of structure.
This is intuitively plausible because many feature pairings can be pointed out
across different systems.
For example, the TCP port triplet of 135, 139, and 445 is likely to be associated
with a Windows computer.
We can apply the I,SUSHI algorithm to attempt to discern structure within these
sets.

33 NMAP Corpus and TreeView
The output of the algorithm provides us with a structural representation of the
original input sets in Newick Tree Format, now a common format used in the
bioinformatics field for phylogenetic analysis.
TreeView is a useful tool in computational biology for viewing phylogenetic
taxonomies.
The output is nice trees highlighting the structure we have been able to infer.
I NSERT TREEVI EW TREES
Now that we have been able to infer structure from host characteristics, it is
important to find out whether these structural characteristics are an outcome of
random connectivity or if there is a clear IPL relation from the host
characteristics.
If an IPL relationship can be successfully identified it’s not unlikely that a host
classification method can be devised.

34 IPL and host analysis
Host analysis would be rather difficult if there was no underlying structure and if
host features exhibited strong independence, in that they appeared to have no
biased associated with other features.
Given that an SMTP service is found on a given host, would it be more or less
fathomable that the POP service will be found on the same host than if SMTP was
not present?

12

This is the basis of a concept called preferential connectivity, something that is
highly related to IPL relationships.
Analyzing the occurrence of independent random features and attempting to infer
structure in their association will only yield incidental and random connectivity.

35 Random Connectivity vs. IPL
Random connectivity is not be what we observe in the NMAP corpus.
To test this hypothesis, additional corpuses have been randomly generated
containing the same number of sets as the original corpus but where each feature
is independent yet has the same likelihood of occurrence that is observed in the
original corpus from our NMAP scan.
Because of this assumption of independence, structural characteristics in the
original corpus should not be found in this generated corpus.
I NSERT FREQUENCY DI STRI BUTI ON OF FEATURES
I NSERT TREES GENERATED FROM TABLES BUI LD FROM
I , SUSHI FROM BOTH CORPUSES
I NSERT FREQUENCY CHARACTERI STI CS OF SYMBOLS
FROM CORPUSES

36 Static Binary Analysis
Static Binary analysis is essentially the analysis of executable binary programs
without having access to source code and without the need to actually run the
program.
Early binary analysis methods consisted of simple pattern matching rules for
know potential vulnerable conditions, such as calls to strcpy() or sprintf().
These methods are easily implemented with IDA scripts and even simple regular
expression matching but as these simple vulnerable conditions became more and
more apparent to now more security minded programmers this left only more
obscure and complex vulnerabilities in software.

37 Binary Difference Analysis and Modularity
One way security analysts can glean insight into security holes is through security
patches.
Patches are effectively the exact description of a security flaw and its addressed
fix.
One assumption that patches make and is clearly true based on the fact that
patches in fact do work, is that programs are modular.
Modification of a single portion of code does not necessarily impact the
syntactical representation of the rest of the program.
From this assumption, it follows that we can expect that we can extrapolate the
flaws and changes across two versions of a program simply by looking at their
difference.
If a program were not modular, the difference would be too widespread to come
to an understanding simply from their binary difference even though the programs
are functionally, semantically, similar.

38 Binary Difference Analysis and Bioinformatics

13

A huge amount of work in the analysis of difference and functional changes of
binary sequences has been performed in Bioinformatics.
DNA sequences of an ever expanding number of organisms have been stored and
analyzed since the first sequencing of the Epstein-Barr Virus by the UK Medical
Research Council in 1984.
DNA is a base64 code grouped in triplets called codons, each member of being
one of four amino acids.
This information has since been extensively analyzed and comparisons of genes
between species and sometimes across species can lead to an understanding of
protein function similarities and overall species relations.
Simple computer program code is dwarfed by the sheer volume of DNA sequence
code so manual genomic sequence analysis simply becomes infeasible.
The analysis of sequences is done with computers and sequence alignment
algorithms that can account for many different types of mutations.
Needleman-Wunsch Algorithm for global sequence alignment was designed in
1970. It was designed to search for similarities in amino acid sequences of
proteins.

39 Sequence Alignment
There are two main types of sequence alignment, local and global pair-wise
alignment.
Pair-wise alignment is concerned with best finding pair-wise matches across two
sequences based on some similarity scoring strategy.
The typical purpose in bioinformatics is to find homologous gene sequences and
is useful in answering questions about protein function, ancestry, structural
importance and molecular evolution.
Global alignment is concerned with finding the best global match for a given pair
of sequences and is very useful in the alignment of similar sequences.
Local alignment is concerned with finding sections within sequences that are
more strongly related.

40 Needleman-Wunsch
BEGIN EXCERPT FROM WIKIPEDIA
The Needleman-Wunsch algorithm performs a global alignment on two
sequences. It is commonly used in bioinformatics to align protein or nucleotide
sequences. The algorithm was proposed in 1970 by Saul Needleman and Christian
Wunsch in their paper “A general method applicable to the search for similarities
in the amino acid sequence of two proteins.”
The Needleman-Wunsch algorithm is an example a of dynamic programming, and
is guaranteed to find the alignment with the maximum score. Needleman-Wunsch
is the first instance of dynamic programming being applied to biological sequence
comparison.
END EXCERPT FROM WIKIPEDIA
APPLT NEEDLEMAN TO PATCHED MS PROGRAM TO
EXTRACT DELTAS ALSO PROVI DE ALGORI THM CODE

41 Smith-Waterman and BLAST
BEGIN WIKIPEDIA EXCERPT

14

The Smith-Waterman algorithm is a well-known algorithm for performing local
sequence alignment; that is, for determining similar regions between two
nucleotide or protein sequences. The algorithm was first proposed by Temple
Smith and Michael Waterman in 1981. Like the Needleman-Wunsch algorithm,
on which it is a variation, Smith-Waterman is a dynamic programming algorithm.
As such, it has the desirable property that it is guaranteed to find the optimal local
alignment with respect to the scoring system being used (which includes the
substitution matrix and the gap-scoring scheme). However, the Smith-Waterman
algorithm is fairly demanding of time and memory resources: in order to align
two sequences of lengths m and n, O(mn) time and space are required. As a result,
it has largely been replaced in practical use by the BLAST algorithm; although
not guaranteed to find optimal alignments, BLAST is much more efficient.
Examples of other questions that researchers use BLAST to answer are
Which bacterial species have a protein that is related in lineage to a certain protein
whose amino-acid sequence I know?
Where does the DNA that I've just sequenced come from?
What other genes encode proteins that exhibit structures or motifs such as the one
I've just determined?
END WIKIPEDIA EXCERPT
APPLY SMI TH- WATERMAN ALGORI THM TO MS PROGRAMS
TO EXTRACT DELTAS AND PROVI DE ALGORI THM CODE

42 Sequence Alignment and Domain Shuffling
One complication of molecular evolution that causes problems for sequence
alignment is domain shuffling.
Domain shuffling is the rearrangement of segments of one or more genes, each of
which codes for a different structural domain in the gene product.
In binary executables, the similar effect can be seen in that certain compiler
optimizations may move program code and rearrange function order in memory,
sometimes even breaking single functional blocks up into non-contiguous sections
of program code.
This breaks the original assumption of modularity in binary difference analysis.
Performing binary difference analysis on semantically isomorphic code different
only by compiler optimizations will yield numerous changes in its sequence.
This is a form of syntactical symmetry breaking.
Even domain shuffling was a problem tackled by biologists 20 years ago.
30 years later… reverse engineering is barely moving past IDA scripts.

43 Program Flow Graphs
In their most basic form, graphs are a collections of nodes connected together
with edges.
Graphs have many applications, such as in production, delivery and shipment
logistics, network flow analysis, internet routing, traffic analysis and population
migration.
In computer science they have been historically used to model program flow and
finite state machines.

15

Flow diagrams, flowcharts, are used to visually describe the execution logic of a
program.
Flowcharts are typically created to assist in the development and design of an
application, but it has become increasingly apparent that they can provide much
use in static binary analysis a la Halvar Flake.
The main idea is that if a visual flowchart of program execution can automatically
be created from a compiled binary then the program code can be more easily
understood.
Flowcharts address the inherent non-linearity of a complete program
They can account for domain shuffling.

44 Program Roadmaps
A program can be thought of as a city roadmap, where intersections are
conditional decisions where execution path branching occurs.
The actual path from point A to point B is a linear sequence of events where at
each intersection only a single choice was made, so in that sense program
execution is linear, but the actual space in which the program execution took
place is not.
Because storage is linear, modeling this roadmap must be done in some linear
manner.
A single program can be represented in many different ways.
The flow graphs of programs may be structurally isomorphic with difference
analysis would imply they were very different.
Programs can be analyzed and compared in terms of their graph structure.
Vulnerability research and discovery may be performed by searching a program
flow graph for sub-graphs highly correlated with a vulnerable conditions.

45 Comments on Graph Isomorphism
Graph isomorphism falls just short of being an NP problem yet cannot be
classified as P.
Program flow is a restricted class of graphs.
Program flows can often be represented as FSMs, are directed, can often be
planar, have entry points thus can be pinned down for at least one node, and can
artificially be restricted to a constant node degree ceiling by insertion of NOPs at
collided jump target addresses.
These characteristics severely reduce the class of graphs into very manageable
and nicely behaved class of graphs that most can be proven to be P time testable
for isomorphism.

46 Sequence Motifs and Binary Analysis
In bioinformatics, a sequence motif is a widespread nucleotide or amino-acid
sequence that is believed to have some sort of functional significance.
In program code, standard functional calls, such as printf(), are quite common.
In a program flow graph with inlined CALLs, the sequence generated by these
common function calls can considered to be sequence motifs.
Rules that define sequence motifs that can vary in structure are often created.
Rules are actually expressed as regular expressions, not unlike POSIX regex.
Probabilistic rules in the form of Markov Models are even created.

16

These regular expression rules are very similar to the way that binary analysis is
performed to find simple vulnerable conditions.
For example, searching for strcpy() as the sign of a buffer overflow is done by
searching for the sequence motif it generates in binary program code.
Many tools and IDA scripts automate this process and have even been quite
effective in finding numerous security holes.

47 Lexical Cohesion
Lexical cohesion is the characteristic continuity of semantic mean of text.
Lexical cohesion is a direct result of a body of writing “being about the same
thing.”
For example, a group of sentences in a paragraph are not random and
disconnected. Rather, they coherently “stick together.”
The study of cohesion, lexical or otherwise, is quite possibly the most important
component of linguistics.
There are two main types of cohesive relationships, reiteration and collocation,
and Halliday and Hasan go further to classify cohesion into five categories based
on specific word dependency relationship.
Reiteration and collocation can be described in effectively simpler terms.
Reiteration involves the repetition of lexical items across sentences.

48 Three examples of reiteration would be the
following sentence pairs.

The f l y i sn’ t movi ng. The f l y i s dead.
The f l y i sn’ t movi ng. The bug i s dead.
The f l y i sn’ t movi ng. I t i s dead.
Notice that the reiteration of the word ‘ fly’ can be through repetition or replaced
by superordinates or pronouns.

49 Collocation is a more broad association between
lexical items.

Collocation occurs any time that a pair of words occurring near each other is
related in some way. Two examples of collocation are as follows.
I l ove cat s. I hat e dogs.
I ’ m usi ng t he comput er . I ’ m t ypi ng a paper .
Love and hate are antonyms but are related to each other by being members of
some classifiable semantic set.
Cats and dogs also have a clear semantic relation.
Computer and typing are also semantically related, although are as clearly
classifiable, as the action of typing is not unique to the use of computers.
Lexical cohesion usually occurs over a sequence of sentences all spanning some
central topic of discussion and these sequences are known as lexical chains.
Lexical cohesion is important because it provides a clear contextual aid in the
interpretation of otherwise potentially ambiguous terms, and most importantly it
provides coherence and structure in discourse and thus helps construct a larger
meaning in text.
Lexical cohesion has a number of applications in text classification.

17

50 Collocation and WordNET
One valuble preexisting lexicon for lexical cohesion and collocation is the
thesaurus.
A thesaurus is a network of nodes (word) and edges (relations).
Semantic relation can be measured in terms of distance in a thesaurus.
Subject and topic transition and detection can be performed using this information
by finding dense word cluster representation across any given input.

51 Collocation and functional binary analysis
An interesting application of the collocation concept would be in functional
binary analysis.
Building a thesaurus-like lexicon based on commonly collocated sequence motifs
can potentially help automate code subject detection.
Associating higher level ideas to code blocks would increase efficiency of
analysis.
Because tokenizing code into sequence motifs is not nearly as cut-and-dry as
tokenizing words from language, building a relational lexicon is a rather dubious
task.

52 In Closing
Unfortunately, there was simply not enough time to fully articulate each idea and
fully describe each algorithm presented.
Additional detailed information can be found throughout www.the-mathclub.net
A book is on the way expanding on these concepts and many others.
Feel free to come up and talk to me anytime during the conference.
Questions now?

53 References and Tools
Carlos M Nash. "Cohesion and Reference in English Chatroom Discourse."
Proceedings of the 38th Hawaii International Conference on System Sciences.
2005

D. Michie, D.J. Spiegelhalter, C.C. Taylor. "Machine Learning, Neural and
Statistical Classification." 1994

Jane Morris. "Lexical Cohesion Computed by Thesaural Relations as an Indicator
of the Structure of Text." Computational Linguistics Volume 17, Number 1. 1991

Hang Li. "Generalizing Case Frames Using a Thesaurus and the MDL Principle."
Computational Linguistics Volume 24, Number 2. 1998.

A.A. Tsonis, C. Schultz, and P.A. Tsonis. “Zipf’s Law and the Structure and
Evolution of Languages,” Complexity, 2(5): pp. 12-13, 1997.

B. Mandelbrot: Adaptation d’un message a la linge de transmission. I & II.
Comptes rendus (Paris). 232: pp. 1638–1640 and 2003–2005. 1951.

18

Viktor Pekar. "Modeling Semantic Coherence from Corpus Data: The Fact and
the Frequency of a Co-occurrence." Coyote Papers 12, 1-8 Language in Cognitive
Science. 1999.

Z. K. Silagadze. "Citations and the Zipf-Mandelbrot’s law."
arXiv:physics/9901035 v2 26 Jan 1999.

Mary Cook. "Experimenting to Produce a Software Tool for Authorship
Attribution." 2003.

Dario Benedetto, Emanuele Caglioti, Vittorio Loreto. "Language Trees and
Zipping." arXiv:cond-mat/0108530 v2 19 Dec 2001.

Reka Albert and Albert-Laszlo Barabasi. "Statistical mechanics of complex
networks." REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY
2002.

Craig G. Nevill-Manning, Ian H. Witten: Identifying Hierarchical Strcture in
Sequences: A Linear-Time Algorithm. Journal of Artificial Intelligence Research
(JAIR), Volume 7. 1997.

Halvar Flake. "Graph-Based Binary Analysis." Blackhat USA. 2003.

Halvar Flake. “More fun with Graphs.” Blackhat Federal. 2003.

"MEART: The Semi-Living Artist." http://www.fishandchips.uwa.edu.au/

Marshall Beddoe. "Protocol Informatics." Toorcon. 2004.

Richard F. Voss. "Evolution of long-range fractal correlations and 1/f noise in
DNA base sequences." Phys Rev Lett. 1992 Jun 22;68(25):3805-3808.

G. Caldarelli, R. Marchetti and L. Pietronero. "The fractal properties of Internet."
Europhys. Lett., 52 (4), pp. 386–391 (2000)

Wentian Li. "Large-Scale Patterns in DNA Texts." 1999.

Damian H. Zanette. "Zipf's law and the creation of musical context."
arXiv:cs.CL/0406015 v1 7 Jun 2004.

Zipf, G. K. "The Psycho-Biology of Language." Boston: Houghton Mifflin.
(1935)

Zipf, G. K. "Human Behaviour and the Principle of Least Effort." Cambridge,
MA: Addison-Wesley. (1949)

19

Papoulis, A. "Bayes' Theorem in Statistics" and "Bayes' Theorem in Statistics
(Reexamined)." §3-5 and 4-4 in Probability, Random Variables, and Stochastic
Processes, 2nd ed. New York: McGraw-Hill, pp. 38-39, 78-81, and 112-114,
1984.

Filotti, Mayer. "A polynomial time algorithm for determining isomorphism of
graphs of fixed genus" In Proceedings of the Twelfth Annual ACM Symposium
on Theory of Computing, pages 236-243, 1980.

Miller: "Isomorphism testing for graphs of bounded genus", In Proceedings of the
Twelfth Annual ACM Symposium on Theory of Computing, pages 218-224,
1980.

Hopcroft, Wong: "A linear time algorithm for isomorphism of planar graphs" In
Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
pages 172-184, 1974.

Luks: "Isomorphism of graphs of bounded valence can be tested in polynomial
time" Proc. 21st IEEE FOCS Symp., 1980, 42,49

Hoffmann: "Group-Theoretic Algorithms and Graph Isomorphism" Lecture Notes
in Computer Science 136, Springer 1982 (Chapter V).

Babai,Grigoryev,Mount: "Isomorphism of Graphs with Bounded Eigenvalue
Multiplicity" In Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing, pages 310-324, San Francisco, California, 5-7 May
1982.

Nelson ,et. al. "Automatically generating a topic description for text and searching
and sorting text by topic using the same." United States Patent 5,937,422.
Assignee: USA as represented by the NSA. August 10, 1999

TreeView. Tree drawing software for Apple Macintosh and Windows.
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
GraphViz. Graph Visualization Software. http://www.graphviz.org/
BLAST. http://www.ncbi.nlm.nih.gov/blast/
ClustalW. A general purpose multiple sequence alignment program for DNA or
proteins. http://www.ebi.ac.uk/clustalw/
SEQUITUR. inferring hierarchies from sequences. http://sequitur.info/
I,Sushi. Identifying Hierarchical Structure in Unordered Sets. http://the-
mathclub.net/index.php/Identifying_Hierarchical_Structure_in_Unordered_Sets.
SpamAssassin. http://spamassassin.apache.org/
NMAP. http://www.insecure.org/
GNUPLOT. http://www.gnuplot.info/
ALION. Pairwise Alignment. http://motif.stanford.edu/alion/
WordNET. http://wordnet.princeton.edu/

